19 research outputs found

    COVID-19 global risk : expectation vs. reality

    Get PDF
    Background and Objective: COVID-19 has engulfed the entire world, with many countries struggling to contain the pandemic. In order to understand how each country is impacted by the virus compared with what would have been expected prior to the pandemic and the mortality risk on a global scale, a multi-factor weighted spatial analysis is presented. Method: A number of key developmental indicators across three main categories of demographics, economy, and health infrastructure were used, supplemented with a range of dynamic indicators associated with COVID-19 as independent variables. Using normalised COVID-19 mortality on 13 May 2020 as a dependent variable, a linear regression (N = 153 countries) was performed to assess the predictive power of the various indicators. Results: The results of the assessment show that when in combination, dynamic and static indicators have higher predictive power to explain risk variation in COVID-19 mortality compared with static indicators alone. Furthermore, as of 13 May 2020 most countries were at a similar or lower risk level than what would have been expected pre-COVID, with only 44/153 countries experiencing a more than 20% increase in mortality risk. The ratio of elderly emerges as a strong predictor but it would be worthwhile to consider it in light of the family makeup of individual countries. Conclusion: In conclusion, future avenues of data acquisition related to COVID-19 are suggested. The paper concludes by discussing the ability of various factors to explain COVID-19 mortality risk. The ratio of elderly in combination with the dynamic variables associated with COVID-19 emerge as more significant risk predictors in comparison to socio-economic and demographic indicators

    Global and temporal COVID-19 risk evaluation

    Get PDF
    The COVID-19 pandemic has caused unprecedented crisis across the world, with many countries struggling with the pandemic. In order to understand how each country is impacted by the virus and assess the risk on a global scale we present a regression based analysis using two pre-existing indexes, namely the Inform and Infectious Disease Vulnerability Index, in conjunction with the number of elderly living in the population. Further we introduce a temporal layer in our modeling by incorporating the stringency level employed by each country over a period of 6 time intervals. Our results show that the indexes and level of stringency are not ideally suited for explaining variation in COVID-19 risk, however the ratio of elderly in the population is a stand out indicator in terms of its predictive power for mortality risk. In conclusion, we discuss how such modeling approaches can assist public health policy

    Exoskeletons with virtual reality, augmented reality and gamification for stroke patients' rehabilitation : systematic review

    Get PDF
    Background: Robot-assisted therapy has become a promising technology in the field of rehabilitation of post-stroke patients with motor disorders. Motivation during the rehabilitation process is a top priority for a majority of stroke survivors. With the advancement in technology, there has been the introduction of Virtual Reality, Augmented Reality, customizable games or a combination thereof that aid robotic therapy in retaining or increasing the interests of patients to keep performing the exercises. However, there are gaps in evidence regarding the transition from clinical rehabilitation to home-based therapy and it calls for an updated synthesis of literature showcasing this trend. The present review proposes a categorization of these studies according to technologies used by them and also details research in upper limb and lower limb applications. Objective: The goal of this work was to review the practices and technologies implemented for the rehabilitation of post-stroke patients. It aims to assess the effectiveness of exoskeleton robotics in conjunction with any of the three technologies, Virtual Reality, Augmented Reality or Gamification for improving activity and participation in post-stroke survivors. Methods: A systematic search of the literature on exoskeleton robotics applied with any of the three technologies, Virtual Reality, Augmented Reality or Gamification, was performed in the databases namely; MEDLINE (Medical Literature Analysis and Retrieval System Online, or MEDLARS Online), EMBASE (Excerpta Medica database), Science Direct & The Cochrane Library. Exoskeleton based studies that did not include any VR, AR or gamification elements were excluded and publications from the year 2010 to 2017 were included. Results in the form of improvements in patients were also recorded and taken into consideration in finding the effectiveness of therapy on patients. Results: Thirty studies were identified based on the inclusion criteria that included randomised controlled trials as well as explorative research pieces. There was a total of around 385 participants across the studies. Use of technologies such as Virtual Reality/Augmented Reality/Gamification based Exoskeletons are capable of filling the transition from clinical to home-based settings. Our analysis showed that there were in general improvements in the motor deficiency for patients using the novel interfacing techniques with exoskeletons. This categorization of studies helps in understanding the scope of rehabilitation therapies that can be successfully arranged for home-based rehabilitation. Conclusions: Future studies are necessary to explore various types of customizable games required to retain or increase the motivation of patients going through the therapy individually

    A classifier to detect informational vs. non-informational heart attack tweets

    Get PDF
    Social media sites are considered one of the most important sources of data in many fields, such as health, education, and politics. While surveys provide explicit answers to specific questions, posts in social media have the same answers implicitly occurring in the text. This research aims to develop a method for extracting implicit answers from large tweet collections, and to demonstrate this method for an important concern: the problem of heart attacks. The approach is to collect tweets containing “heart attack” and then select from those the ones with useful information. Informational tweets are those which express real heart attack issues, e.g., “Yesterday morning, my grandfather had a heart attack while he was walking around the garden.” On the other hand, there are non-informational tweets such as “Dropped my iPhone for the first time and almost had a heart attack.” The starting point was to manually classify around 7000 tweets as either informational (11%) or non-informational (89%), thus yielding a labeled dataset to use in devising a machine learning classifier that can be applied to our large collection of over 20 million tweets. Tweets were cleaned and converted to a vector representation, suitable to be fed into different machine-learning algorithms: Deep neural networks, support vector machine (SVM), J48 decision tree and naïve Bayes. Our experimentation aimed to find the best algorithm to use to build a high-quality classifier. This involved splitting the labeled dataset, with 2/3 used to train the classifier and 1/3 used for evaluation besides cross-validation methods. The deep neural network (DNN) classifier obtained the highest accuracy (95.2%). In addition, it obtained the highest F1-scores with (73.6%) and (97.4%) for informational and non-informational classes, respectively

    An explainable machine learning framework for lung cancer hospital length of stay prediction

    Get PDF
    This work introduces a predictive Length of Stay (LOS) framework for lung cancer patients using machine learning (ML) models. The framework proposed to deal with imbalanced datasets for classification-based approaches using electronic healthcare records (EHR). We have utilized supervised ML methods to predict lung cancer inpatients LOS during ICU hospitalization using the MIMIC-III dataset. Random Forest (RF) Model outperformed other models and achieved predicted results during the three framework phases. With clinical significance features selection, over-sampling methods (SMOTE and ADASYN) achieved the highest AUC results (98% with CI 95%: 95.3–100%, and 100% respectively). The combination of Over-sampling and under-sampling achieved the second-highest AUC results (98%, with CI 95%: 95.3–100%, and 97%, CI 95%: 93.7–100% SMOTE-Tomek, and SMOTE-ENN respectively). Under-sampling methods reported the least important AUC results (50%, with CI 95%: 40.2–59.8%) for both (ENN and Tomek- Links). Using ML explainable technique called SHAP, we explained the outcome of the predictive model (RF) with SMOTE class balancing technique to understand the most significant clinical features that contributed to predicting lung cancer LOS with the RF model. Our promising framework allows us to employ ML techniques in-hospital clinical information systems to predict lung cancer admissions into ICU

    Technology, privacy, and user opinions of COVID-19 mobile apps for contact tracing : systematic search and content analysis

    Get PDF
    Background: Many countries across the globe have released their own COVID-19 contact tracing apps. This has resulted in the proliferation of several apps that used a variety of technologies. With the absence of a standardized approach used by the authorities, policy makers, and developers, many of these apps were unique. Therefore, they varied by function and the underlying technology used for contact tracing and infection reporting. Objective: The goal of this study was to analyze most of the COVID-19 contact tracing apps in use today. Beyond investigating the privacy features, design, and implications of these apps, this research examined the underlying technologies used in contact tracing apps. It also attempted to provide some insights into their level of penetration and to gauge their public reception. This research also investigated the data collection, reporting, retention, and destruction procedures used by each of the apps under review. Methods: This research study evaluated 13 apps corresponding to 10 countries based on the underlying technology used. The inclusion criteria ensured that most COVID-19-declared epicenters (ie, countries) were included in the sample, such as Italy. The evaluated apps also included countries that did relatively well in controlling the outbreak of COVID-19, such as Singapore. Informational and unofficial contact tracing apps were excluded from this study. A total of 30,000 reviews corresponding to the 13 apps were scraped from app store webpages and analyzed. Results: This study identified seven distinct technologies used by COVID-19 tracing apps and 13 distinct apps. The United States was reported to have released the most contact tracing apps, followed by Italy. Bluetooth was the most frequently used underlying technology, employed by seven apps, whereas three apps used GPS. The Norwegian, Singaporean, Georgian, and New Zealand apps were among those that collected the most personal information from users, whereas some apps, such as the Swiss app and the Italian (Immuni) app, did not collect any user information. The observed minimum amount of time implemented for most of the apps with regard to data destruction was 14 days, while the Georgian app retained records for 3 years. No significant battery drainage issue was reported for most of the apps. Interestingly, only about 2% of the reviewers expressed concerns about their privacy across all apps. The number and frequency of technical issues reported on the Apple App Store were significantly more than those reported on Google Play; the highest was with the New Zealand app, with 27% of the reviewers reporting technical difficulties (ie, 10% out of 27% scraped reviews reported that the app did not work). The Norwegian, Swiss, and US (PathCheck) apps had the least reported technical issues, sitting at just below 10%. In terms of usability, many apps, such as those from Singapore, Australia, and Switzerland, did not provide the users with an option to sign out from their apps. Conclusions: This article highlighted the fact that COVID-19 contact tracing apps are still facing many obstacles toward their widespread and public acceptance. The main challenges are related to the technical, usability, and privacy issues or to the requirements reported by some users

    Application of artificial intelligence for screening COVID-19 patients using digital images : meta-analysis

    Get PDF
    Background: The COVID-19 outbreak has spread rapidly and hospitals are overwhelmed with COVID-19 patients. While analysis of nasal and throat swabs from patients is the main way to detect COVID-19, analyzing chest images could offer an alternative method to hospitals, where health care personnel and testing kits are scarce. Deep learning (DL), in particular, has shown impressive levels of performance when analyzing medical images, including those related to COVID-19 pneumonia. Objective: The goal of this study was to perform a systematic review with a meta-analysis of relevant studies to quantify the performance of DL algorithms in the automatic stratification of COVID-19 patients using chest images. Methods: A search strategy for use in PubMed, Scopus, Google Scholar, and Web of Science was developed, where we searched for articles published between January 1 and April 25, 2020. We used the key terms “COVID19,” or “coronavirus,” or “SARS-CoV-2,” or “novel corona,” or “2019-ncov,” and “deep learning,” or “artificial intelligence,” or “automatic detection.” Two authors independently extracted data on study characteristics, methods, risk of bias, and outcomes. Any disagreement between them was resolved by consensus. Results: A total of 16 studies were included in the meta-analysis, which included 5896 chest images from COVID19 patients. The pooled sensitivity and specificity of the DL models in detecting COVID-19 were 0.95 (95% CI 0.94-0.95) and 0.96 (95% CI 0.96-0.97), respectively, with an area under the receiver operating characteristic curve of 0.98. The positive likelihood, negative likelihood, and diagnostic odds ratio were 19.02 (95% CI 12.83-28.19), 0.06 (95% CI 0.04-0.10), and 368.07 (95% CI 162.30-834.75), respectively. The pooled sensitivity and specificity for distinguishing other types of pneumonia from COVID-19 were 0.93 (95% CI 0.92-0.94) and 0.95 (95% CI 0.94-0.95), respectively. The performance of radiologists in detecting COVID-19 was lower than that of the DL models; however, the performance of junior radiologists was improved when they used DL-based prediction tools. Conclusions: Our study findings show that DL models have immense potential in accurately stratifying COVID-19 patients and in correctly differentiating them from patients with other types of pneumonia and normal patients. Implementation of DL-based tools can assist radiologists in correctly and quickly detecting COVID-19 and, consequently, in combating the COVID-19 pandemic

    Application of artificial intelligence in COVID-19 pandemic : bibliometric analysis

    Get PDF
    The application of artificial intelligence (AI) to health has increased, including to COVID-19. This study aimed to provide a clear overview of COVID-19-related AI publication trends using longitudinal bibliometric analysis. A systematic literature search was conducted on the Web of Science for English language peer-reviewed articles related to AI application to COVID-19. A search strategy was developed to collect relevant articles and extracted bibliographic information (e.g., country, research area, sources, and author). VOSviewer (Leiden University) and Bibliometrix (R package) were used to visualize the co-occurrence networks of authors, sources, countries, institutions, global collaborations, citations, co-citations, and keywords. We included 729 research articles on the application of AI to COVID-19 published between 2020 and 2021. PLOS One (33/729, 4.52%), Chaos Solution Fractals (29/729, 3.97%), and Journal of Medical Internet Research (29/729, 3.97%) were the most common journals publishing these articles. The Republic of China (190/729, 26.06%), the USA (173/729, 23.73%), and India (92/729, 12.62%) were the most prolific countries of origin. The Huazhong University of Science and Technology, Wuhan University, and the Chinese Academy of Sciences were the most productive institutions. This is the first study to show a comprehensive picture of the global efforts to address COVID-19 using AI. The findings of this study also provide insights and research directions for academic researchers, policymakers, and healthcare practitioners who wish to collaborate in these domains in the future

    The effect of strict state measures on the epidemiologic curve of COVID-19 infection in the context of a developing country : a simulation from Jordan

    Get PDF
    COVID-19 has posed an unprecedented global public health threat and caused a significant number of severe cases that necessitated long hospitalization and overwhelmed health services in the most affected countries. In response, governments initiated a series of non-pharmaceutical interventions (NPIs) that led to severe economic and social impacts. The effect of these intervention measures on the spread of the COVID-19 pandemic are not well investigated within developing country settings. This study simulated the trajectories of the COVID-19 pandemic curve in Jordan between February and May and assessed the effect of Jordan’s strict NPI measures on the spread of COVID-19. A modified susceptible, exposed, infected, and recovered (SEIR) epidemic model was utilized. The compartments in the proposed model categorized the Jordanian population into six deterministic compartments: suspected, exposed, infectious pre-symptomatic, infectious with mild symptoms, infectious with moderate to severe symptoms, and recovered. The GLEAMviz client simulator was used to run the simulation model. Epidemic curves were plotted for estimated COVID-19 cases in the simulation model, and compared against the reported cases. The simulation model estimated the highest number of total daily new COVID-19 cases, in the pre-symptomatic compartmental state, to be 65 cases, with an epidemic curve growing to its peak in 49 days and terminating in a duration of 83 days, and a total simulated cumulative case count of 1048 cases. The curve representing the number of actual reported cases in Jordan showed a good pattern compatibility to that in the mild and moderate to severe compartmental states. The reproduction number under the NPIs was reduced from 5.6 to less than one. NPIs in Jordan seem to be effective in controlling the COVID-19 epidemic and reducing the reproduction rate. Early strict intervention measures showed evidence of containing and suppressing the disease

    A privacy risk assessment for the Internet of Things in healthcare

    No full text
    Beyond the massive technological opportunities and benefits the IoT offers, important challenges such as trust, security, and privacy should be considered [8]. In the IoT, things, such as sensor devices, will be integrated into streets, homes, work and recreation places, buildings, shopping centres, cars, and other public environments. They will also be carried by people or mounted on mobile vehicles. As a result, things may communicate with each other locally within personal area network (PAN) setups or in a peer-to-peer fashion. They may also interact with IoT applications remotely over the Internet. In a typical IoT application, IoT devices may have the capabilities of automatically sensing, communicating, and processing the information collected from their environments and their users [14], with a high degree of spatial and temporal precision. This information may comprise the exchange of users’ personal and contextual information, including their sensitive or personal information. Therefore, it is likely that new privacy issues will arise with such a deep penetration of technology in our life [13]. This paper attempts to highlight the privacy issues derived from the adoption of the Internet of Things technologies in healthcare. Section 2 discusses the various IoT developments in healthcare, such as remote health monitoring systems and assistive technologies. The associated and derived privacy issues and challenges are then discussed in Sect. 3. This section ends with a brief privacy risk assessment. Concluding remarks are provided in Sect. 4
    corecore